Truth Tables Instructor: Dr. Jason Sheley

Testing arguments: Truth Tables

- One standard way of testing validity is by means of truth tables.
- In practice, the tables record what happens when the conditions hold for the truth and falsity of the premise and conclusion.

The Truth Table for OR

The Truth Table for NOT

The Truth Table for AND

a	b	$\mathrm{a} \wedge \mathrm{b}$
T	T	T
T	F	F
F	T	F
F	F	F

Conditional Statements

- If ___ Then
- The "If" part of the statement is known as the antecedent.
- The "Then" part of the statement is known as the consequent.

The Truth Table for $\mathrm{A} \rightarrow \mathrm{B}$

a	b	$\mathrm{a} \rightarrow \mathrm{b}$
T	T	T
T	F	F
F	T	T
F	F	T

- A conditional statement indicates that a relationship holds between two ideas.
- Conditional statements make no claims about the truth of the components alone.
- What a conditional says is IF the antecedent is true, THEN the consequent is true.
- Once we understand conditional statements better, we also understand that truth tables represent the truth conditions of statements.
- Indeed, truth tables represent conditionals, in a sense.
- The various tables represent the conditions under which statements are true when organized in various ways.

Counterexample method

- This is the method of isolating the form of an argument and then constructing a substitution instance having true premises and a false conclusion.
- Remember: this method can help us prove if an argument is invalid, but it does not prove that an argument is valid.
- We now want a method that will enable us to isolate the form of the argument, then check to see whether it is valid or not.

Using Truth Tables to Test for Validity

- Symbolize each premise and the conclusion
- List each in a column, and assign the possible truth-values.
- If we can find a row in which the premises are true, and the conclusion is false, then the argument is INVALID. If we cannot find such an instance, the argument is VALID.
- Let's try it! http://www.math.fsu.edu/~wooland/argumentorl TruthTablesandArgs.html

INVALID

- If A, then B
- not A
- Therefore, not B

If A, then B	not A	not B
T	T	T
F	F	T
T	T	F
T	F	F

REMEMBER: DON'T SKIP STEPS!

If A, then B	not A	not B
T	T	T
F	F	T
T	T	F
T	F	F

A	B	If A, then B	not A	not B
T	T	T	F	F
T	F	F	F	T
F	T	T	T	F
F	F	T	T	T

- Ultimately, we want to be able to construct a truth table for any argument that we find.
- For now, let's construct the truth tables for the valid arguments we have seen: MP, MT, DS, HS
- Let's construct the truth tables for the invalid forms we have seen: FP, FT, FDS, FHS

More Practice!

- For more practice, see: http://www.math.fsu.edu/ \simeq wooland/argumentor/TruthTablesandArgs.html
- See also Hurley 6.3 and 6.4
- See also PhilHelper's Youtube page:
- https://www.youtube.com/watch?v=Bkv1p NTj_
- https://www.youtube.com/watch?
$\mathrm{v}=9$ ToChd c2aw
- It turns out that we can use the inference rules in a game. This game helps us prove new things.
- (We will learn the game once we complete the next phase)

MODUS PONENS

- A $\longrightarrow B$
- A
- Therefore, B

Disjunctive Syllogism

- A v B
- ~B
- Therefore, A

Modus Tollens
 "the mode of taking away"

If \mathbf{A}, then \mathbf{B}

not B

not A

Hypothetical Syllogism

If \mathbf{A}, then \mathbf{B}
If B, then \mathbf{C}

If A , then \mathbf{C}

- Now that we have seen the valid forms, we want to also be able to prove that an argument does not work.
- There are some common mistakes. We can notice these mistakes by looking at deviations from the forms we have seen.

INVALID

- If A, then B
- B
- Therefore, A

INVALID

- If A, then B
- If C, then B
- Therefore, if A then C

INVALID

- If A, then B
- not A
- Therefore, not B

INVALID

- Either A or B
- A
- Therefore, B

